Skip to content

AI Workstation Guide 2025

Here’s a specific guide for building a PC workstation for AI/ML workloads:

  1. GPU - Most Critical Component
  • Minimum Requirements:
    • NVIDIA RTX 4080 (16GB VRAM)
    • RTX 4090 (24GB VRAM) recommended
  • Optimal Setup:
    • 2× RTX 4090 for serious training
    • Or 1× RTX 4090 + 1× RTX 4080 for mixed workloads
  • Enterprise Options:
    • NVIDIA A5000 (24GB) or A6000 (48GB)
    • Multiple GPUs for larger models
  1. CPU Requirements
  • Minimum:
    • AMD Ryzen 9 7950X or Intel i9-13900K
    • 16+ cores/32+ threads
  • Recommended:
    • AMD Threadripper Pro 5995WX
    • 64 cores/128 threads for heavy preprocessing
  • Features needed:
    • PCIe 4.0/5.0 support
    • High core count for parallel processing
    • Good single-thread performance
  1. RAM Configuration
  • Minimum: 64GB DDR5
  • Recommended: 128GB DDR5
  • Optimal: 256GB+ DDR5
  • Specifications:
    • DDR5-6000 or faster
    • Low latency (CL30 or better)
    • ECC support recommended
  1. Storage Configuration
  • System Drive:
    • 2TB NVMe PCIe 4.0 SSD
    • 7000MB/s+ read/write
  • Dataset/Model Storage:
    • 4TB+ NVMe PCIe 4.0 SSD
    • Separate from system drive
  • Archive Storage:
    • 8TB+ HDD for dataset storage
    • Consider NAS for expandability
  1. Power Supply
  • Minimum: 1200W
  • Recommended: 1600W
  • Requirements:
    • 80+ Titanium efficiency
    • Multiple 8-pin PCIe connectors
    • ATX 3.0 with native 16-pin connector
    • Quality brand (Seasonic, Corsair, be quiet!)
  1. Cooling Solutions
  • GPU Cooling:
    • Adequate case airflow
    • Consider water-cooling for multi-GPU
  • CPU Cooling:
    • 360mm AIO minimum
    • Custom loop for multi-GPU setups
  • Case Requirements:
    • High airflow design
    • Support for multiple radiators
    • Space for multiple GPUs
  1. Motherboard Specifications
  • Features needed:
    • PCIe 5.0 support
    • Multiple x16 slots
    • Robust VRM design
    • Thunderbolt/USB4 support
  • Form Factor:
    • E-ATX for better component spacing
    • WS (Workstation) series recommended
  1. Example Configurations:

Entry-Level ML Workstation:

  • CPU: AMD Ryzen 9 7950X
  • GPU: 1× RTX 4090
  • RAM: 64GB DDR5-6000
  • Storage: 2TB + 4TB NVMe
  • PSU: 1200W
  • Estimated Cost: $4,000-5,000

Professional ML Workstation:

  • CPU: Threadripper Pro 5995WX
  • GPU: 2× RTX 4090
  • RAM: 256GB DDR5-4800 ECC
  • Storage: 4TB + 8TB NVMe
  • PSU: 1600W
  • Estimated Cost: $8,000-12,000
  1. Software Considerations
  • OS: Ubuntu LTS or Windows 11 Pro
  • CUDA Toolkit latest version
  • PyTorch/TensorFlow
  • Docker support
  • WSL2 for Windows
  1. Additional Requirements
  • UPS (1500VA minimum)
  • Multiple displays
  • High bandwidth network (10GbE recommended)
  • Temperature monitoring
  • Proper ventilation in room
  1. Maintenance Considerations
  • Regular dust cleaning
  • Driver updates
  • Temperature monitoring
  • Backup solutions
  • Power conditioning

This configuration ensures sufficient resources for running local LLMs, model training, and inference tasks while providing upgrade paths for future expansion.